UE714 - Introduction to logic [PHIL 102]


Lieu et planning


  • ENS-Ulm
    45 rue d'Ulm 75005 Paris
    1er semestre / hebdomadaire, mercredi 09:30-09:30
    du 22 septembre 2021 au 12 janvier 2022


Description


Dernière modification : 18 juin 2021 14:59

Type d'UE
Enseignements fondamentaux de master
Domaine
-
Disciplines
Psychologie et sciences cognitives
Page web
https://docs.google.com/document/d/1WwYJ45bziAvPEaFD4eDYriZxJmfEbRcytO9Vjzm-WEI/edit 
Langues
anglais
Mots-clés
Philosophie Sciences cognitives
Aires culturelles
-
Intervenant·e·s
  • Paul Égré [référent·e]   directeur de recherche, CNRS / Institut Jean-Nicod (IJN)

The purpose of this course is to provide an introduction to contemporary logic (propositional logic, logic of predicates). The course also aims to show the importance of logic for understanding the notions of truth, proof, and logical consequence. The course also aims to give some perspectives on the applications of logic to the psychology of reasoning, the study of language, and the elucidation of metaphysical questions. The course includes an introduction to inductive logic (probability, applications of Bayes rule). The course does not presuppose particular knowledge but will lead students to become familiar with the formalism.

L’objet de ce cours est de fournir une introduction à la logique contemporaine (logique propositionnelle, logique des prédicats). Le cours vise en outre à montrer l’importance de la logique pour la compréhension des notions de vérité, de preuve, et de conséquence logique. Le cours vise aussi à donner quelques perspectives sur les applications de la logique à la psychologie du raisonnement, à l’étude du langage, et à l’élucidation de questions de nature métaphysique. Le cours inclut une introduction à la logique inductive (probabilités, applications de la règle de Bayes). Le cours ne présuppose pas de connaissances particulières mais amènera les étudiants à se familiariser avec le formalisme.

On successful completion of this course, students should be able to:

  • Formalize arguments in propositional logic and in predicate logic

  • Check argument validity in propositional and predicate logic

  • Be able to construct counter-examples to invalid arguments (counter-models)

  • Feel completely familiar with notions of Boolean operators, valuations, models

  • Have a good grasp of the notions of deductive, inductive, and abductive reasoning

  • Know how to formalize “at least n”, “at most n” and “exactly n” in predicate logic with identity

  • Have up-to-date knowledge of standard topics in logic, including Russell’s theory of definite descriptions, the Wason selection task, the application of Bayes rule to the problem of induction

  • Have access to any more advanced course in logic or formal semantics


Master


  • Séminaires de tronc commun – Sciences cognitives – M1/S1
    Suivi et validation – semestriel hebdomadaire = 6 ECTS
    MCC – CC + participation + Examen

Renseignements


Contacts additionnels
-
Informations pratiques

The course relies on handouts shared every week on Schoology, and is supplemented by a precept (TD) of 1h30 every week (optional, but recommended). Students are encouraged to ask questions in class. Every other week students are assigned a homework assignment, which helps them master the formalism and concepts introduced in class.

Direction de travaux des étudiants

5 biweekly homework assignments (65%)

a final exam (35%)

Participation to the precept (optional) is recommended as it generally benefits to students

Réception des candidats
-
Pré-requis
-

Dernière modification : 18 juin 2021 14:59

Type d'UE
Enseignements fondamentaux de master
Domaine
-
Disciplines
Psychologie et sciences cognitives
Page web
https://docs.google.com/document/d/1WwYJ45bziAvPEaFD4eDYriZxJmfEbRcytO9Vjzm-WEI/edit 
Langues
anglais
Mots-clés
Philosophie Sciences cognitives
Aires culturelles
-
Intervenant·e·s
  • Paul Égré [référent·e]   directeur de recherche, CNRS / Institut Jean-Nicod (IJN)

The purpose of this course is to provide an introduction to contemporary logic (propositional logic, logic of predicates). The course also aims to show the importance of logic for understanding the notions of truth, proof, and logical consequence. The course also aims to give some perspectives on the applications of logic to the psychology of reasoning, the study of language, and the elucidation of metaphysical questions. The course includes an introduction to inductive logic (probability, applications of Bayes rule). The course does not presuppose particular knowledge but will lead students to become familiar with the formalism.

L’objet de ce cours est de fournir une introduction à la logique contemporaine (logique propositionnelle, logique des prédicats). Le cours vise en outre à montrer l’importance de la logique pour la compréhension des notions de vérité, de preuve, et de conséquence logique. Le cours vise aussi à donner quelques perspectives sur les applications de la logique à la psychologie du raisonnement, à l’étude du langage, et à l’élucidation de questions de nature métaphysique. Le cours inclut une introduction à la logique inductive (probabilités, applications de la règle de Bayes). Le cours ne présuppose pas de connaissances particulières mais amènera les étudiants à se familiariser avec le formalisme.

On successful completion of this course, students should be able to:

  • Formalize arguments in propositional logic and in predicate logic

  • Check argument validity in propositional and predicate logic

  • Be able to construct counter-examples to invalid arguments (counter-models)

  • Feel completely familiar with notions of Boolean operators, valuations, models

  • Have a good grasp of the notions of deductive, inductive, and abductive reasoning

  • Know how to formalize “at least n”, “at most n” and “exactly n” in predicate logic with identity

  • Have up-to-date knowledge of standard topics in logic, including Russell’s theory of definite descriptions, the Wason selection task, the application of Bayes rule to the problem of induction

  • Have access to any more advanced course in logic or formal semantics

  • Séminaires de tronc commun – Sciences cognitives – M1/S1
    Suivi et validation – semestriel hebdomadaire = 6 ECTS
    MCC – CC + participation + Examen
Contacts additionnels
-
Informations pratiques

The course relies on handouts shared every week on Schoology, and is supplemented by a precept (TD) of 1h30 every week (optional, but recommended). Students are encouraged to ask questions in class. Every other week students are assigned a homework assignment, which helps them master the formalism and concepts introduced in class.

Direction de travaux des étudiants

5 biweekly homework assignments (65%)

a final exam (35%)

Participation to the precept (optional) is recommended as it generally benefits to students

Réception des candidats
-
Pré-requis
-
  • ENS-Ulm
    45 rue d'Ulm 75005 Paris
    1er semestre / hebdomadaire, mercredi 09:30-09:30
    du 22 septembre 2021 au 12 janvier 2022