Attention, les informations que vous consultez actuellement ne sont pas celles de l'année universitaire en cours. Consulter l'année universitaire 2024-2025.
UE221 - Simple and multiple correspondence analysis
Lieu et planning
-
Université Paris Dauphine
les 24, 25 et 26 mars 2021, 09:00-18:00
Description
Dernière modification : 19 mai 2020 12:59
- Type d'UE
- Enseignements fondamentaux de master
- Disciplines
- Économie, Méthodes et techniques des sciences sociales, Sociologie
- Page web
- -
- Langues
- anglais
- Mots-clés
- -
- Aires culturelles
- -
Intervenant·e·s
- Johannes Hjellbrekke [référent·e] professeur des universités, Université de Bergen, Norvège
In the social sciences, multiple correspondence analysis (MCA) is a statistical technique that perhaps has become best known through the work of the late Pierre Bourdieu (1930-2002), in particular “Distinction” (Bourdieu 1984), “Homo Academicus” (Bourdieu 1988) and “The State Nobility” (Bourdieu 1996). In more recent years, the technique has found a wider audience, and is now used by social scientists in several disciplines.
As a counterpart to principal component analysis (PCA), a geometric technique for the analysis of metric variables, MCA is a geometric technique for the analysis of categorical or categorized variables. Originating in the early 1960s and the French statistician Jean-Paul Benzécri’s work in mathematical linguistics, MCA represents and models data sets as clouds of points in a multidimensional Euclidean space. The interpretation of the data is based on these clouds of points. By combining MCA with inferential techniques and variance analysis, we arrive at an integrated framework of interpretation that also is known under the name of Geometric Data Analysis (GDA).
In a combination of lectures and laboratory exercises, this course will introduce students to the fundamental properties, procedures and rules of interpretation of the most commonly used forms of correspondence analysis, i.e. simple correspondence analysis (CA) and MCA, and also to the most commonly used software. A main emphasis will be put on how to use MCA in one’s own work, and on practical examples and applications. Particular attention will therefore be paid to how MCA can be used in the construction of social spaces.
Le programme détaillé n'est pas disponible.
Master
-
Méthodologie
– Institutions, organisations, économie et société
– M1/S2-M2/S4
Suivi et validation – semestriel quotidienne = 3 ECTS
MCC – contrôle continu
Renseignements
- Contacts additionnels
- -
- Informations pratiques
- -
- Direction de travaux des étudiants
- -
- Réception des candidats
- -
- Pré-requis
- -
Dernière modification : 19 mai 2020 12:59
- Type d'UE
- Enseignements fondamentaux de master
- Disciplines
- Économie, Méthodes et techniques des sciences sociales, Sociologie
- Page web
- -
- Langues
- anglais
- Mots-clés
- -
- Aires culturelles
- -
Intervenant·e·s
- Johannes Hjellbrekke [référent·e] professeur des universités, Université de Bergen, Norvège
In the social sciences, multiple correspondence analysis (MCA) is a statistical technique that perhaps has become best known through the work of the late Pierre Bourdieu (1930-2002), in particular “Distinction” (Bourdieu 1984), “Homo Academicus” (Bourdieu 1988) and “The State Nobility” (Bourdieu 1996). In more recent years, the technique has found a wider audience, and is now used by social scientists in several disciplines.
As a counterpart to principal component analysis (PCA), a geometric technique for the analysis of metric variables, MCA is a geometric technique for the analysis of categorical or categorized variables. Originating in the early 1960s and the French statistician Jean-Paul Benzécri’s work in mathematical linguistics, MCA represents and models data sets as clouds of points in a multidimensional Euclidean space. The interpretation of the data is based on these clouds of points. By combining MCA with inferential techniques and variance analysis, we arrive at an integrated framework of interpretation that also is known under the name of Geometric Data Analysis (GDA).
In a combination of lectures and laboratory exercises, this course will introduce students to the fundamental properties, procedures and rules of interpretation of the most commonly used forms of correspondence analysis, i.e. simple correspondence analysis (CA) and MCA, and also to the most commonly used software. A main emphasis will be put on how to use MCA in one’s own work, and on practical examples and applications. Particular attention will therefore be paid to how MCA can be used in the construction of social spaces.
Le programme détaillé n'est pas disponible.
-
Méthodologie
– Institutions, organisations, économie et société
– M1/S2-M2/S4
Suivi et validation – semestriel quotidienne = 3 ECTS
MCC – contrôle continu
- Contacts additionnels
- -
- Informations pratiques
- -
- Direction de travaux des étudiants
- -
- Réception des candidats
- -
- Pré-requis
- -
-
Université Paris Dauphine
les 24, 25 et 26 mars 2021, 09:00-18:00